Teaching Materials

23
Zaval Light-Weight Visual Components Library

Zaval Light-Weight Visual Components Library

Version 3.5.4

Teaching Materials

Zaval Creative Engineering Group

http://www.zaval.org

Contents

3Introduction

How to...
3
…create a component
3
…create a view
3
…create your own render
4
…create layout manager
5
…create component info manager
7
…use static objects
8
…use lightweight layout managers
9
…customize tree item view
10
…customize grid cell view
11
…customize grid cell editor
12
…use mask text field
13
…customize mask validation
14
…use desktop window
15
…use tool-tips
16
…use timer component
17
…use LwTreeGrid component
18
Support available
22

Introduction

This document tells how to implement various things using the Zaval Light-Weight Visual Components Library (LwVCL). Actually, it’s a sort of “How to…” document – it consists of real world examples that can be cat-and-paste to you application. Each example it well-commented, so it is easy enough to understand the whole process in details.

How to...

The chapter contains set of examples to illustrate the basic ideas of the library. The samples are not too complex and in most cases can be used just for training.

…create a component

The sample illustrates how to create a lightweight component using this library. The component itself is very simple. It controls a background color according mouse state. In case mouse pointer is located inside the component background will be set to “red”, otherwise to “gray”. If a mouse button is pressed than the background will be set to “yellow”. See code example with comments below:

	class LwSampleCanvas

extends LwCanvas

implements LwMouseListener

{

 private boolean isInside;

 public LwSampleCanvas () {

 setBackground (Color.gray);

 }

 public void mouseEntered (LwMouseEvent e) {

 setBackground (Color.red);

 isInside = true;

 }

 public void mouseExited (LwMouseEvent e) {

 setBackground (Color.gray);

 isInside =false;

 }

 public void mousePressed (LwMouseEvent e) {

 setBackground (Color.yellow);

 }

 public void mouseReleased(LwMouseEvent e) {

 if (isInside) setBackground (Color.red);

 else setBackground (Color.gray);

 }

 public void mouseClicked (LwMouseEvent e) {}

}

	This component inherits lightweight component implementation and implements mouse listener interface to get and handle mouse events.

This method is called with the event manager when mouse pointer enters the component area. isInside field is set to true.
This method is called with the event manager when mouse pointer exits the component area.

isInside field is set to true.
This method is called with the event manager when a mouse button has been pressed.

The method is called with the event manager when a mouse button has been pressed. The method determines if the mouse pointer is inside the component by isInside field of the class.

As you can see, it is like creating of AWT/ SWING component.

See the “org/zaval/lw/samples/LwComponentSample.java” sample.

…create a view

The sample illustrates a view creation. The view is used to show colors palette that is represented with 12 boxes. Every color is formed from previous color by adding given “rgbIncremet” variable to red, green and blue values. Source code and comments are shown below:

	public LwCustomView

extends LwView

{

 private Color basic = Color.white;

 private int width = 15, height = 15;

 private int rgbIncrement = -15;

 public LwCustomView() {

 super(ORIGINAL);

 }

 protected Dimension calcPreferredSize() {

 return new Dimension(width*4, height*3);

 }

 public void paint (Graphics g,

 int x, int y,

 int w, int h, Drawable d)

 {

 int realWidth = w/4;

 int realHeight = h/3, xx = x, yy = y;

 Color color = basic;

 for (int i=0; i < 3; i++)

 {

 for (int j=0; j < 4; j++)

 {

 g.setColor(color);

 g.fillRect(xx, yy, realWidth, realHeight);

 color=new Color(color.getRed()+rgbIncrement,

 color.getGreen() + rgbIncrement,

 color.getBlue() + rgbIncrement);

 xx += realWidth;

 }

 yy += realHeight;

 xx = x;

 }

 }

}
	This class inherits abstract view class.

Field “basic” defines a color that will be used as starting color, “width” and “height” fields define size of a color box. “rgbIncrement” field determines a value that is used to form next color.

Constructor indicates to use ORIGINAL (preferred size) to show the view.

This method defines preferred size of the view. This is very important method that will be used to calculate a preferred size of a lightweight component that utilizes this view.

This method determines functionality for appropriate abstract method of LwView class. It defines “face” of the view. The method is executed with a paint manager that passes a location - where the view should be painted and a size - that should be used for this view. In our case view recalculates color boxes size according to “width” and “height “ that have been provided with the owner lightweight component.

The cycle calculates colors and shows the colors boxes. The boxes are shown as a table that has four columns and three rows. Below the view face is shown:

[image: image1.png]

The view usage is shown below:

	public static void main(String[] args)

 {

 LwFrame frame = new LwFrame();

 frame.setSize(100, 80);

 frame.getRoot().setLwLayout(new LwFlowLayout());

 LwComponent comp = new LwCanvas();

 comp.getViewMan(true).setView(new LwCustomView());

 frame.getRoot().add(comp);

 frame.setVisible(true);

 }
	First of all, this method creates a lightweight frame. The frame provides a lightweight root component that should be used to add any other lightweight components. LwFlowLayout is set as a layout manager for the root component (default layout uses raster to layout child components). Next, it is necessary to have a lightweight component that will be used as the view owner, so the component is created and the view is set as a “face” for the component. Finally, the component is added to the root and we set frame as visible to show it.

See the “org/zaval/lw/samples/LwCustomView.java” sample.

…create your own render

The render concept is the same as the view. Render is used to create view for an object. For example the library has render to represent view for an image (java.awt.Image). The sample below illustrates render to paint integer matrix (the target object for the render conforms to int[][] Java type). The render use different colors to paint the matrix items. If an item divisible by 2 than “red” color is used, if item divisible by 3 than “yellow” color is used and so on. The sample is like the view sample that has been shown in previous section. The source code and comments are shown below.

	class LwCustomRender

extends LwRender

{

 private int width = 2, height = 2;

 public LwCustomRender(Object target) {

 super(target);

 }

 protected Dimension calcPreferredSize() {

 int[][] target = (int[][])getTarget();

 return new Dimension(width*target.length,

 height*target[0].length);

 }

 public void paint (Graphics g, int x, int y,

 int w, int h, Drawable d)

 {

 int[][] target =(int[][])getTarget();

 int realWidth = w/target.length;

 int realHeight = h/target[0].length, xx = x, yy = y;

 for (int i=0; i<target.length; i++) {

 for (int j=0; j<target[i].length; j++) {

 if (target[i][j]%2==0) g.setColor(Color.red);

 else

 if (target[i][j]%3==0) g.setColor(Color.yellow);

 else

 if (target[i][j]%5==0) g.setColor(Color.green);

 else

 if (target[i][j]%7==0) g.setColor(Color.black);

 else g.setColor(Color.gray);

 g.fillRect(xx, yy, realWidth, realHeight);

 xx += realWidth;

 }

 yy += realHeight;

 xx = x;

 }

 }

}
	We inherit abstract render class and implement paint() method. Note: The LwRender class inherits LwView class.

The target object that should be painted has to be passed to constructor. In our case, the constructor waits int[][] Java type for the target.

This method determines a preferred size for the render. The information is used with an owner component to calculate a preferred size, so it is very important to have the method. There is not necessary to think about the render insets, this method provides “pure” preferred size.

This method determines functionality for appropriate abstract method of LwRender class. It defines “face” of the render. The method will be executed with paint manager that passes a location - where the view should be painted and a size that should be used for the view. In our case, the view recalculates color boxes size according to “width” and “height” that have been provided with the owner lightweight component After that the target (integer matrix) will be painted according to items values.

The resulting view for a target that was generated using randomization is shown below:

[image: image2.png]

To understand how the render can be used for a lightweight component see previous section, the usage is similar.

See the “org/zaval/lw/samples/LwRenderSample.java” sample.

…create layout manager

Layout manager is a class that controls child components’ sizes and locations. Lightweight containers always use layout managers. The sample illustrates how to create layout manager. Lightweight library provides special interface LwLayout that should be used to create your own layout managers.

The sample layout manager divides a container area to four parts: left top corner, right top corner, left bottom corner and right bottom corner. Each of the parts can be used to place a child component. To determine what part of the container area should be used for a given child component the sample layout provides four constants. Both source code and comments are shown below:

	 class LwCustomLayoutSample implements LwLayout {

 public static final Object TOPLEFT=new Integer(4);

 public static final Object TOPRIGHT=new Integer(3);

 public static final Object BOTTOMLEFT=new Integer(3);

 public static Object BOTTOMRIGHT=new Integer(1);

 Layoutable topLeft, topRight, bottomLeft, bottomRight;

 public void componentAdded(Object o,Layoutable l,int i)

 {

 if (o.equals(TOPLEFT)) topLeft = l;

 else

 if (o.equals(TOPRIGHT)) topRight = l;

 else

 if (o.equals(BOTTOMLEFT)) bottomLeft = l;

 else

 if (o.equals(BOTTOMRIGHT)) bottomRight = l;

 else throw new IllegalArgumentException();

 }

 public void componentRemoved (Layoutable lw, int i)

 {

 if (topLeft == lw) topLeft = null;

 else if (topRight == lw) topRight = null;

 else if (bottomRight == lw) bottomRight = null;

 else if (bottomLeft == lw) bottomLeft = null;

 }

 public Dimension calcPreferredSize(LayoutContainer t)

 {

 int w1 = 0, w2 = 0, h1 = 0, h2 = 0;

 if (topLeft != null && topLeft.isVisible()) {

 Dimension ps = topLeft.getPreferredSize();

 w1 = ps.width; h1 = ps.height;

 }

 if (topRight != null && topRight.isVisible()) {

 Dimension ps = topRight.getPreferredSize();

 w2 = ps.width; h1 = Math.max(ps.height, h1);

 }

 if (bottomLeft != null && bottomLeft.isVisible()) {

 Dimension ps = bottomLeft.getPreferredSize();

 w1 = Math.max(ps.width, w1); h2 = ps.height;

 }

 if (bottomRight != null && bottomRight.isVisible()) {

 Dimension ps = bottomRight.getPreferredSize();

 w2=Math.max(ps.width,w2);

 h2=Math.max(h2,ps.height);

 }

 return new Dimension (w1 + w2, h1 + h2);

 }

 public void layout (LayoutContainer target) {

 int w1 = 0, w2 = 0, h1 = 0, h2 = 0;

 Insets insets = target.getInsets();

 if (topLeft != null && topLeft.isVisible()) {

 Dimension ps = topLeft.getPreferredSize();

 w1 = ps.width; h1 = ps.height;

 }

 if (topRight != null && topRight.isVisible()) {

 Dimension ps = topRight.getPreferredSize();

 w2 = ps.width; h1 = Math.max(ps.height, h1);

 }

 if (bottomLeft != null && bottomLeft.isVisible()) {

 Dimension ps = bottomLeft.getPreferredSize();

 w1 = Math.max(ps.width, w1); h2 = ps.height;

 }

 if (bottomRight != null && bottomRight.isVisible()) {

 Dimension ps = bottomRight.getPreferredSize();

 w2 = Math.max(ps.width, w2);

 h2 = Math.max(h2, ps.height);

 }

 Point offset = target.getLayoutOffset();

 if (topLeft != null && topLeft.isVisible()) {

 topLeft.setLocation(insets.left + offset.x,

 insets.top + offset.y);

 topLeft.setSize(w1, h1);

 }

 if (topRight != null && topRight.isVisible()) {

 topRight.setLocation(insets.left + w1 + offset.x,

 insets.top + offset.y);

 topRight.setSize(w2, h1);

 }

 if (bottomRight != null && bottomRight.isVisible()) {

 bottomRight.setLocation(insets.left + w1 + offset.x,

 insets.top + h1 + offset.y);

 bottomRight.setSize (w2, h2);

 }

 if (bottomLeft != null && bottomLeft.isVisible()) {

 bottomLeft.setLocation(insets.left + offset.x,

 insets.top + h1 + offset.y);

 bottomLeft.setSize (w1, h2);

 }

 }

}

	The class implements LwLayout interface.

The four constants have to be used to determine a child location inside the container. A container component provides special method to add a child component that has the constants and the child as input.

The method is called with an owner container every time when a child component has been added. The layout manager determines how the component should be placed inside the container using input arguments that have been passed to the container. In compliance with the method implementation, it is impossible to add a child anywhere, except one of the container corners. It is necessary to use method add(Object , LwComponent) and first argument has to be defined as one of a constant of the layout manager.

The method is called with an owner container every time when a child component has been removed. The layout sets to null appropriate child component to exclude the child from the layouting process.

The method calculates preferred size of the owner container. The calculation algorithm should not use insets of the container the method provides “pure” preferred size.

The next method layouts child components for a given container. Take care, that the method should use insets data and Point getLayoutOffset() method of the owner (the method returns offset for children location and it uses to support scrolling concept). The set of images below shows different cases of the layout manager usage.

Assume that we create following lightweight components:

…

LwComponent c1 = new LwButton("Top Left");

c1.setBackground(Color.green);

LwComponent c2 = new LwButton("Top Right");

c2.setBackground(Color.yellow);

LwComponent c3 = new LwButton("Bottom Left");

c3.setBackground(Color.blue);

LwComponent c4 = new LwButton("Bottom Right\n...");

c4.setBackground(Color.white);

…

We can get following results for a lightweight container that uses the layout manager:

1. root.add(LwCustomLayoutSample.TOP_LEFT, c1);

root.add(LwCustomLayoutSample.BOTTOM_RIGHT, c4);

[image: image3.png]
2. root.add(LwCustomLayoutSample.TOP_LEFT, c1);

 root.add(LwCustomLayoutSample.TOP_RIGHT, c2);

 root.add(LwCustomLayoutSample.BOTTOM_RIGHT, c4);

[image: image4.png]
3. root.add(LwCustomLayoutSample.TOP_LEFT, c1);

 root.add(LwCustomLayoutSample.TOP_RIGHT, c2);

 root.add(LwCustomLayoutSample.BOTTOM_LEFT, c3);

 root.add(LwCustomLayoutSample.BOTTOM_RIGHT, c4);
[image: image5.png]

See the “org/zaval/lw/samples/LwCustomLayoutSample.java” sample.

…create component info manager

The library allows determining your own managers for different situations. For example, we need to get information about a lightweight component where the mouse cursor is located by pressing “F1” key. The information includes the component class name, location and size. The sample below illustrates how the task can be solved by creation the special manager. The manager handles key and mouse events and if “F1” key has been pressed than the manager shows information window where the component class name, location and size are displayed.

	public class LwCompInfoManager

implements LwMouseListener, LwKeyListener, LwMouseMotionListener

{

 public static LwCompInfoManager manager;

 private LwComponent target;

 private int lastX, lastY;

 public void mouseMoved (LwMouseMotionEvent e)

 {

 lastX = e.getAbsX();

 lastY = e.getAbsY();

 }

 public void mouseEntered (LwMouseEvent e) {

 target = e.getLwComponent();

 }

 public void mouseExited (LwMouseEvent e)

 {

 if (target != null)

 {

 LwDesktop d = LwToolkit.getDesktop(target);

 LwWinLayer wl=(LwWinLayer)d.getLayer("win");

 wl.removeAll();

 target = null;

 }

 }

 public void keyPressed (LwKeyEvent e)

 {

 if (target != null &&

 e.getKeyCode() == KeyEvent.VK_F1)

 {

 LwDesktop d = LwToolkit.getDesktop(target);

 LwWinLayer wl= (LwWinLayer)d.getLayer("win");

 wl.removeAll();

 LwLabel lab = new LwLabel(new Text(""));

 lab.setBackground (new Color (220, 220, 220));

 lab.getViewMan(true).setBorder("br.plain");

 lab.setText("Class: "+

 target.getClass().getName()+"\n"+

 "x = " + target.getX() + ", y = " +

 target.getY() + "\n" +

 "width = "+target.getWidth()+", height = "+

 target.getHeight());

 Dimension ps = lab.getPreferredSize();

 lab.setSize(ps.width, ps.height);

 lab.setLocation (lastX, lastY);

 wl.add (LwWinLayer.INFO_WIN, lab);

 }

 }

 public void keyReleased(LwKeyEvent e) {}

 public void keyTyped(LwKeyEvent e) {}

 public void startDragged(LwMouseMotionEvent e) {}

 public void endDragged (LwMouseMotionEvent e) {}

public void mouseDragged(LwMouseMotionEvent e) {}

 public void mousePressed (LwMouseEvent e) {}

 public void mouseReleased(LwMouseEvent e) {}

 public void mouseClicked (LwMouseEvent e) {}

}
	This class implements LwMouseListener, LwKeyListener, LwMouseMotionListener to listen all performed key and mouse events

Defines public field where the manager instance will be stored. This is mandatory field that is set by the library during bootstrapping.

Defines two fields to store current cursor location.

The method is called whenever the mouse cursor location has been changed. The manager stores the cursor location in the special fields.

The method is called whenever the mouse cursor enters into a component.

The method is called whenever the mouse cursor exits the component area. We use the method to hide the information window for the component.

The method is called whenever a key has been pressed.

Tests if the target component is not null and the “F1” key has been pressed.

Gets the desktop where the target component lives.

Gets the window layer for the desktop.

Closes all opened windows on the window layer (to close previous information window if it has been shown).

Creates the information window.

Sets the information window background.

Sets the information window border.

Sets the information window content that includes the target component class name, location and size.

Gets the information window preferred size.

Sizes the information window according to its preferred size.

Locates the window to the current mouse cursor location.

Shows the information window.

After the manager has been implemented it is necessary to add the manager description into ”lw.properties” file. Open the file, you will see “man” key at the beginning of the file. Add your manager identification key, for example “info” at the end of the managers list as follow:

man=paint,focus,cursor,clip,pop,tt,info

Next, add the “info” key to describe the manager class as follow:

info.cl=org.zaval.lw.samples.LwCompInfoManager

(Note: in your case the class name can be different)

See the “org/zaval/lw/samples/LwCompInfoManager.java” sample.

…use static objects

The library provides static object concept to decrease system resource usage. If you have a class whose instance can be shared, it makes sense to use an instance of the class as a static object. For this purpose you should describe the class in the lightweight properties file:

	…

obj=<old list>, myStaticObject

…

obj.myStaticObject.cl=<class>

obj.myStaticObject.arg=<a1>,<a2>,…

obj.myStaticObject.key=<key>

…

	First of all, it is necessary to define new unique name for the static object in the static objects list section.

You should define the static object class name by the section. The section contains a class name relatively org.zaval.lw package.

This is optional section that contains list of arguments to use as input for the static object construct.

This section defines a key that is used to fetch an instance of the static object.

After that, an instance of the static object can be got with getStaticObject(String) static method of LwManager class.

…use lightweight layout managers

The library contains a set of layout managers that are used to layout container child components. Every lightweight container always uses layout manager. It is impossible to set layout manager to null value, but it doesn’t mean that the child components cannot be laid out using set locations and sizes. There are several samples to illustrate lightweight layouts usage. First sample is very simple, it shows how to layout child components using its set sizes and locations:

	…

LwPanel panel = new LwPanel();

panel.setLwLayout(new LwRasterLayout(false));

Button button = new Button(“Button”);

button.setSize(100, 30);

button.setLocation(20, 20);

panel.add (button);

…
	Creates panel and sets LwRasterLayout as the panel layout manager. The layout constructor gets false argument as input to prevent preferred sizes usage to size the child components, in this case the child components sizes are defined by setSize methods.

Creates child components and defines size and location that will be used to layout the child.

Adds the child to the container.

There is another sample that illustrates the LwRasterLayout usage:

	…

LwPanel panel = new LwPanel();

panel.setLwLayout(new LwRasterLayout(true));

Button button = new Button(“Button”);

button.setLocation(20, 20);

LwLabel label = new LwLabel(“Label”);

label.setLocation(20, 100);

label.setPSSize(100, -1);

panel.add (button);

panel.add (label);

…
	Creates panel and sets LwRasterLayout as the panel layout manager. The layout constructor gets true argument as input that indicates that child components should be sized using its preferred size.

Creates child components and defines the location that will be used to layout the child. The component’s preferred size will be used to size the component by the layout manager.

Creates child components and defines the location that will be used to layout the child.

Fixes the width of the label component that will be used by the layout manager. The height will be equal to preferred height of the child component.

Adds the child components to the container.

The next sample is a bit more complex. For example, we need to create something like a login panel:

	…

class LwLoginPanel

extends LwPanel

{

 public LwLoginPanel()

 {

 getViewMan(true).setBorder("br.etched");

 LwPanel p1 = new LwPanel();

 p1.setLwLayout(new LwGridLayout(2, 2));

 LwConstraints c = new LwConstraints();

 c.insets = new Insets(4,4,4,4);

 p1.add (c, new LwLabel("User name:"));

 p1.add (c, new LwTextField("", 8));

 p1.add (c, new LwLabel("Password:"));

 p1.add (c, new LwTextField("", 8));

 LwPanel p2 = new LwPanel();

 p2.setLwLayout(new LwBorderLayout(2, 2));

 LwPanel p3 = new LwPanel();

 p3.setLwLayout(new LwFlowLayout(Alignment.CENTER,

 Alignment.CENTER));

 p3.add(new LwButton("Login"));

 p2.add (LwBorderLayout.CENTER, p1);

 p2.add (LwBorderLayout.SOUTH, p3);

 setLwLayout(new LwFlowLayout(Alignment.CENTER,

 Alignment.CENTER));

 add (p2);

 }

}

	Sets border for the panel.

Creates child of p2 panel and sets grid layout for the container.

Creates grid layout constraint and sets insets that is used as vertical and horizontal gaps for child components.

Creates child components and adds its to p1 panel.

Creates p2 child panel and sets grid layout for the container with appropriate vertical and horizontal gaps.

Creates child of p2 panel and sets flow layout for the container.

Creates and adds login button to the p3 panel. The button will be laid out in the center of the parent.

The application that uses the login panel and explanations are shown bellow (the real application will not have black borders, it’s just for demonstrational purposes):

[image: image6.png]
See the “org/zaval/lw/samples/LwLayoutUsageSample.java” sample.

…customize tree item view

Lightweight tree view component provides ability to customize tree view items views. It means that you can bind any tree view item with the specified view to customize rendering process. For example, it is necessary to use additional state icon for some tree view items. The sample below illustrates how it can be implemented:

	class LwCustomViewProvider

implements LwViewProvider

{

 public LwView getView(Drawable d, Object obj)

 {

 LwPanel panel = new LwPanel();

 panel.setLwLayout(new LwFlowLayout());

 LwImage icon = new LwImage(“icon.gif”);

 String v = (String) ((Item)obj).getValue();

 LwLabel title = new LwLabel(v);

 panel.add (icon);

 panel.add (title);

 return new LwCompRender(panel);

 }

}

…

Item root = new Item(“root”);

Tree data = new Tree(root);

data.add (root, new Item(“Child 1”));

data.add (root, new Item(“Child 2”));

LwTree tree = new LwTree(data);

tree.setViewProvider(new LwCustomViewProvider());

…
	First of all it is necessary to implement your own view provider. This is very simple interface that creates view for the specified component and the given tree model value.

The method creates panel where image and label components are laid out by the flow layout. It is supposed that tree data model stores strings as the tree items values and the value is used as content for the label component. After that the method creates and returns component render with the panel as the rendered target.

The next step shows how to apply the new view provider for a concrete tree view component.

Creates and fills the tree model.

Creates tree view component with the tree data model.

Sets the new view provider for the tree view component.

[image: image12.png]The sample is show below:

See the “org/zaval/lw/samples/LwTreeCustomViewSample.java” sample.

…customize grid cell view

Lightweight grid component provides ability to customize cells views. It means that you can bind any grid cell with the specified view to customize rendering process. For example, you have a grid column that renders boolean data (“Yes” or “No”) and you would like to render it as check box view. The sample below illustrates how it can be implemented:

	public class LwGridBooleanView

implements LwGridViewProvider

{

 public LwView getView(int row, int col, Object o)

 {

 String value = (String)o;

 if (col !=2)

 return new LwTextRender(value==null?””

 :value);

 String type =value != null && value.equals(“Yes”)

 ?”check.on”

 :”check.off”;

 return LwManager.getView(type);

 }

 public int getXAlignment(int row, int col) {

 return Alignment.CENTER;

 }

 public int getYAlignment(int row, int col) {

 return Alignment.CENTER;

 }

 public Color getCellColor (int row, int col) {

 return null;

 }

}

…

Matrix data = new Matrix(10, 3);

data.put (1, 2, “Yes”);

…

LwGrid grid = new LwGrid(data);

grid.setViewProvider(new CustomViewProvider());

…

	First of all it is necessary to implement own view provider. This interface defines views for the grid cells, vertical and horizontal alignments for the views and cells background colors.

It is supposed that grid data model stores strings as the cells values and it is supposed that column number two is used to store boolean string value (“Yes” or “No”). The method returns appropriate box view if the column has number two and returns text render for others.

The views are fetched by the LwManager.
The method returns horizontal alignment that is used to align the grid view inside the grid cell area.

The method returns vertical alignment that is used to align the grid view inside the grid cell area.

The method returns a color that should be used to fill the cell background. In this case the method returns null, it means that grid background will be used.

The next step is applying the new grid view provider for a concrete grid component. Firstly the grid data model is created and filled.

Creates the grid component with the data model.

Sets the new grid views provider for the component.

The sample application is shown bellow:

[image: image13.png]
See the “org/zaval/lw/samples/LwGridBooleanView.java” sample.

…customize grid cell editor

Lightweight grid component provides ability to customize cells editing process. It means that you can use a lightweight component to edit a cell value. The sample is like previous, but in this case it is necessary to organize editing for boolean cells using checkbox component. The sample below illustrates how it can be implemented:

	public class LwGridBooleanEditor

implements LwEditorProvider

{

 public LwComponent getEditor(int r, int c, Object o)

 {

 if (c !=2) return null;

 String value = (String)o;

 boolean state = value!=null&&value.equals(“Yes”);

 LwCheckbox box = new LwCheckbox();

 box.setState(state);

 return box;

 }

 public Object fetchEditedValue(int row,

 int col,

 LwComponent c)

 {

 return ((LwCheckbox)c).getState()

 ? “Yes”

 : “No” ;

 }

 public boolean shouldStartEdit (int row,

 int col,

 LwAWTEvent e)

 {

 return true;

 }

}

…

Matrix data = new Matrix(10, 3);

data.put (1, 2, “Yes”);

…

LwGrid grid = new LwGrid(data);

grid.setViewProvider(new LwGridBoleanView());

grid.setViewProvider(new LwGridBoleanEditor());

…

	First of all it is necessary to implement own editor provider. This interface defines a component that should be used as the cell editor, defines how to fetch a model value from the editor component and defines how the editor should be initialized.

It is supposed that grid data model stores strings as the cells values and it is supposed that column number two is used to store boolean string value (“Yes” or “No”). The method returns null if this is not boolean column, it means that the column cannot be edited. In a case when the column number is two the method initializes and returns checkbox component as the cell editor.

The method fetches the data model value for the specified cell from the given editor component (that has been used to edit the cell value). In this case, a checkbox state is converted to appropriate string value.

The method checks if it is necessary to initiate editing process for the specified cell and for the given lightweight event. In this case the editing process will be initiated immediately.

The next step is applying the new grid editor provider for a concrete grid component. Firstly the grid data model is created and filled.

Creates the grid component with the data model.

Sets the new grid view (see the previous sample) and editor providers for the component.

See the “org/zaval/lw/samples/LwGridBooleanEditor.java” sample.

…use mask text field

The sample illustrates lightweight masked text field usage. First simple sample shows creating credit number input filed (Visa Electron). The credit number contains four numeric slots, every slots contains four figures and the slots are separated by “-” character. For example “7876-9873-3435-1237”. The application below provides input field to enter the credit number type:

	public class LwCreditCardInputSample

{

 public static void main(String[] args)

 {

 LwFrame frame = new LwFrame();

 frame.setSize(150, 100);

 LwMaskTextField tf = new LwMaskTextField() ;

 tf.setMask(“nnnn-nnnn-nnnn-nnnn”);

 LwContainer root = frame.getRoot();

 LwLayout l = new LwFlowLayout(Alignment.CENTER,

 Alignment.CENTER));

 root.setLwLayout(l);

 root.add (tf);

 frame.setVisible(true) ;

 }

}
	Creates the application frame.

Creates mask text field.

Specifies the mask. The mask contains four numeric slots separated by “-” character and every slot consists of four ciphers.

Adds the mask component to the application.

The result application is shown below:

[image: image7.png]

See the “org/zaval/lw/samples/LwCreditCardInputSample.java” sample.

The next sample illustrates creation of the input date field. The library has LwDateMaskValidator class that provides ability to customize input for date fields. For example, the date format is like “01/Jun/2001”, it is necessary to provide input field that supports the date format. The table below shows the date input field creating:

	public class LwDateInputSample

{

 public static void main(String[] args)

 {

 LwFrame frame = new LwFrame();

 frame.setSize(150, 100);

 LwMaskTextField tf = new LwMaskTextField() ;

 tf.setValidator(new DateMaskValidator());

 tf.setMask(“dd/MMM/yyyy”);

 LwContainer root = frame.getRoot();

 LwLayout l = new LwFlowLayout(Alignment.CENTER,

 Alignment.CENTER));

 root.setLwLayout(l);

 root.add (tf);

 frame.setVisible(true) ;

 }

}
	Creates the application frame.

Creates mask text field.

Sets the date validator that knows how validate the date input.

Specifies the mask. The mask contains day, month, year slots separated by “/” character. Draw attention that the month slot represents short month name (for example “Feb”, “Jun” and so on).

Adds the mask component to the application.

The result application is shown below (the first window is date mask field just after starting application and the second window is date mask after inputting some data):

[image: image8.png] [image: image9.png]

See the “org/zaval/lw/samples/LwDateInputSample.java” sample.

…customize mask validation

The sample illustrates how the mask validation process can be customized. For example, we need to create input field that can be filled with hex numeric only. For this purpose we should implement our own mask validator. The validator uses ‘h’ character as the tag name and defines HEX_TYPE mask element type. The mask converts every hex letter to upper case. The table below shows the mask validator code and comments:

	class HexMaskValidator

implements MaskValidator

{

 public static final int HEX_TYPE=1;

 public boolean isHandledTag (char tag) {

 return tag == ‘h’;

 }

 public int getTypeByTag(char tag) {

 return tag==’h’?HEX_TYPE:UNDEF_TYPE;

 }

 public char getBlankChar(char tag) {

 return ‘F’;

 }

 public boolean isValidValue (MaskElement e,

 String newValue)

 {

 char[] buf = newValue.toCharArray();

 for (int i=0;i<buf.length; i++)

 {

 if (!Character.isDigit(buf[i]) &&

 buf[i] != ‘A’ && buf[i] != ‘B’ && buf[i] != ‘C’ &&

 buf[i] != ‘D’ && buf[i] != ‘E’ && buf[i] != ‘F’)

 return false;

 }

 return true;

 }

 public String completeValue (MaskElement e,

 String newValue)

 {

 return newValue. toUpperCase();

 }

}
	Defines hex mask element type.

Defines mask tags that are handled by the validator (in our case it is ‘h’ character).

Defines the type for the specified tag. In our case the HEX_TYPE is bound with ‘h’ tag.

Defines default character that is used to fill mask value for not inputted characters.

Validates the specified value for the mask element. Since the mask validator supports only one mask element type, the method doesn’t tests what the specified mask element type is, in our case the type will have always hex type.

The new value is valid if it consists of 0 - 9 or A – F characters.

Converts the new value to upper case.

The next table illustrates the validator usage. The sample application creates hex input field that consists of four hex ciphers:

	public class LwCreditInputApp

{

 public static void main(String[] args)

 {

 LwFrame frame = new LwFrame();

 frame.setSize(150, 100);

 LwMaskTextField tf = new LwMaskTextField() ;

 tf.setPSSize(50, -1);

 tf.setValidator(new HexMaskValidator());

 tf.setMask(“hhhh”);

 LwContainer root = frame.getRoot();

 LwLayout l = new LwFlowLayout(Alignment.CENTER,

 Alignment.CENTER));

 root.setLwLayout(l);

 root.add (tf);

 frame.setVisible(true) ;

 }

}
	Creates the application frame.

Creates mask text field.

Sets the hex validator.

Specifies the mask. The mask defines input for hex numeric that contains four ciphers.

Adds the mask component to the application.

The result application is shown below (the first window is hex mask field just after starting application and the second window is hex mask after inputting some data):

[image: image10.png] [image: image11.png]

See the “org/zaval/lw/samples/LwCustomInputSample.java” sample.

…use desktop window

This sample illustrates the lightweight window usage. For example, we want to show window on the lightweight desktop with editor area. To open a new editor window you should press “Show Window” button. The sample bellow illustrates how it can be implemented:

	public class LwWinShowerSample

implements LwActionListener

{

 public void actionPerformed(LwActionEvent e)

 {

 LwComponent src = (LwComponent)e.getSource();

 LwDesktop desk = LwToolkit.getDesktop(src);

LwWinLayer wl=(LwWinLayer)desk.getLayer(LwWinLayer.ID);

 LwWindow win = new LwWindow();

 win.setLocation(30, 30);

 win.setSize (300, 300);

 LwContainer root = win.getRoot();

 root.setLwLayout(new LwBorderLayout());

 LwTextField editor = new LwTextField();

 root.add(LwBorderLayout.CENTER, editor);

 wl.add(LwWinLayer.MDI_WIN, win);

 wl.activate(win);

 }

 public static void main(String[] args)

 {

 LwFrame frame = new LwFrame();

 frame.setSize(600, 600);

 LwButton button = new LwButton(“Show Window”);

 button.setSize(120, 25);

 button.addActionListener(new LwWinShowerSample());

 frame.getRoot().add(button);

 frame.setVisible(true);

 }

}
	The class implements LwActionListener interface to get action event generated by “Show Window” button.

This method is invoked whenever “Show Window” button has been pressed.

Gets source of the event.

Gets desktop where the source component is resided.

Gets the window layer where windows can be resided

Creates lightweight window class, locates and sizes it.

Sets border layout for the root container of the window to layout the text field component.

Adds the text area as the window content.

Opens MDI window on the desktop.

Activates the window.

This main method creates the lightweight application. Firstly LwFrame is created and initialized, than “Show Window” button is created and the LwWinShowerSample are registered as the button listener.

See the “org/zaval/lw/samples/LwWinShowerSample.java” sample.

…use tool-tips

This sample illustrates the lightweight tool-tips usage. For example, we want to show current mouse cursor location for the specified component via tool-tip. There are two ways to implement this feature:

· If this is a new component it is possible to implement TooltipInfo interface.

· If it is necessary to use the tool-tip for existing lightweight component it is possible to use LwTooltipMan manager to specify the TooltipInfo interface for the component.

The sample bellow illustrates both ways:

	First implementation way
class LwTooltipCanvas

extends LwCanvas

implements TooltipInfo

{

 public LwComponent getTooltip(int x, int y)

 {

 LwLabel l = new LwLabel("[x=" + x + ",y="+y + "]");

 l.setBackground(LwTooltipMan.tooltipBack);

 return l;

 }

 public static void main(String[] args)

 {

 LwFrame frame = new LwFrame();

 frame.setSize(200, 200);

 LwTooltipCanvas tp = new LwTooltipCanvas ();

 tp.setSize(100, 100);

 tp.getViewMan(true).setBorder("br.plain");

 frame.getRoot().add(tp);

 frame.setVisible(true);

 }

}

Second implementation way

In this case we define the tool tip for a button component:

public class LwTooltipSample2

implements TooltipInfo

{

 public LwComponent getTooltip(int x, int y)

 {

 LwLabel l = new LwLabel("[x=" + x + ",y="+y + "]");

 l.setBackground(LwTooltipMan.tooltipBack);

 return l;

 }

 public static void main(String[] args)

 {

 LwFrame frame = new LwFrame();

 frame.setSize(300, 300);

 LwButton b = new LwButton (“Test”);

 b.setLocation(50, 50);

 b.setSize(100, 30);

 LwTooltipMan.manager.setTooltipInfo(b,

 new LwTooltipSample2 ());

 frame.getRoot().add(b);

 frame.setVisible(true);

 }

}

	The class implements TooltipInfo interface to define tool-tip component.

This method returns a label component that will be used as a tool-tip that indicates current mouse cursor location.

Creates lightweight window class, locates and sizes it.

Creates, locates and sizes the component that shows mouse cursor location using tool-tip.

Adds component to the root and shows the window.

The class implements TooltipInfo interface to define tool-tip component.

This method returns a label component that will be used as a tool-tip that indicates current mouse cursor location.

Creates lightweight window class, locates and sizes it.

Creates, locates and sizes the button component.

Creates and binds the specified tool-tip interface with the button component.

Adds button to the root and shows the window.

	

See the “org/zaval/lw/samples/LwTooltipSample1.java” and “org/zaval/lw/samples/LwTooltipSample2.java” samples.

…use timer component

This sample illustrates the timer component usage. This component is not a GUI component that provides ability to register Runnable interfaced classes to be executed periodically. The sample implements a light weight canvas that periodically change its background color:

	public class LwTimerSample

extends LwCanvas

implements Runnable

{

 int r,g,b,d = 3;

 public void run ()

 {

 if (r + d >= 255) d = -3;

 else

 if (r + d < 0) d = 3;

 r += d;

 g += d;

 b += d;

 setBackground(new Color(r, g, b));

 }

 public static void main(String[] args)

 {

 LwFrame frame = new LwFrame();

 frame.setSize(300, 300);

 LwTimerSample ts = new LwTimerSample();

 ts.setLocation(50, 50);

 ts.setSize(100, 100);

 Timer.getTimer(false).add(ts, 20, 20);

 frame.getRoot().add(ts);

 frame.setVisible(true);

 }

}
	This class extends LwCanvas and implements Runnable interface to have ability be executed by the timer component.

The field defines red, blue, green background color entries and a value that will be used as increment/decrement for the entries.

This is Runnable method implementation. The method will be called by the timer component regularly in the specified time frame. It increments or decrements current RGB entries of the background color and sets the new color as the background.

Creates lightweight window class, locates and sizes it.

Creates the canvas instance, locates and sizes it.

Gets shared instance of the timer and adds the canvas to be executed in the specified time with the specified period.

Adds canvas to the root and shows the window.

See the “org/zaval/lw/samples/LwTimerSample.java”

…use LwTreeGrid component

This sample application is a simple lightweight library resources viewer. The viewer shows information about managers and static objects that are used by the library at the moment. Taking into account complexity of the task it would be described as a several sub-tasks:

1. The first sub-task creates a tree model for the tree grid component according to the list of lightweight managers and static objects (components views). So, the tree model describes two main branches: lightweight managers and static objects.

2. The second sub-task illustrates how the tree model items can be bound with the tree grid model items. The task shows classes names that are bound with appropriate lightweight managers and static objects in the second tree grid column.

3. And the last sub-task shows how we can customize the tree grid cells rendering to show static objects views “faces” columns.

	public class LwPropertiesViewer

extends LwPanel

{

 public LwPropertiesViewer(Hashtable p)

 {

 TreeModel treeModel = createTreeModel(p);

 LwTreeGrid treeGrid = createTreeGrid (treeModel);

 for (int i=0; i < treeGrid.getCols(); i++)

 treeGrid.setColWidth(i, 180);

 add (LwBorderLayout.CENTER,

 new LwScrollPan(treeGrid));

 }

 protected LwTreeGrid createTreeGrid(TreeModel m)

 {

 LwTreeGrid treeGrid = new LwTreeGrid(m);

 LwGridCaption cp = new LwGridCaption(treeGrid);

 caption.putTitle (0, "Object Key");

 caption.putTitle (1, "Class Name");

 caption.putTitle (2, "View");

 treeGrid.add (LwGrid.TOP_CAPTION_EL, cp);

 return treeGrid;

 }

 protected TreeModel createTreeModel(Hashtable p)

 {

 Item root = new Item("root");

 TreeModel treeModel = new Tree(root);

 Item man = new Item("Managers");

 Item sobj = new Item("Static Objects");

 treeModel.add (root, man);

 treeModel.add (root, sobj);

 String mans = (String)p.get("man");

 StringTokenizer st=new StringTokenizer(mans, ",");

 while (st.hasMoreTokens())

 treeModel.add(man, new Item(st.nextToken()));

 st = new StringTokenizer((String)p.get("obj"), ",");

 while (st.hasMoreTokens())

 {

 String key = p.get("obj." + st.nextToken() + ".key");

 treeModel.add(sobj, new Item(key));

 }

 return treeModel;

 }

}
	The constructor gets a hashtable as an input argument. The hashtable contains properties that are read from “lw.properties” file.

Creates tree model.

Creates tree grid component with the specified tree model.

Sizes the tree grid columns

Adds the created tree component in the scroll panel and adds the scroll panel to the panel.

This method creates tree grid component with the specified tree model.

Creates tree grid component.

Creates caption for the tree grid component.

Defines three titles as a tree grid columns captions.

Adds the created caption to the tree grid component.

Returns the created tree grid component.

This method creates tree model for the specified properties.

Creates a root of the tree model.

Creates tree model with the specified root.

Creates two branches where the first will contain all managers and second will contain all static objects.

Adds the two branches as root child items of the tree model.

Gets a list of managers sections.

Fetches sections names and adds them as child items of the manager branch in the tree model.

Fetches static objects’ names and adds their keys as child items of the static objects branch in the tree model.

The result is shown below:

[image: image14.png]At the next step we will add second column to the tree grid that will show a class name for corresponding managers and static objects. For this purpose we have to add createTreeGridModel method to the LwPropertiesViewer class as follows (the red color indicates changes in existing code):

	public class LwPropertiesViewer

extends LwPanel

{

 public LwPropertiesViewer(Hashtable p)

 {

 TreeModel treeModel = createTreeModel(p);

 LwTreeGrid treeGrid = createTreeGrid (treeModel);

 createTreeGridModel(treeGrid);

 for (int i=0; i < treeGrid.getCols(); i++)

 treeGrid.setColWidth(i, 180);

 add (LwBorderLayout.CENTER,

 new LwScrollPan(treeGrid));

 }

 …

 protected void createTreeGridModel(LwTreeGrid grid)

 {

 MatrixModel matrixModel = grid.getModel();

 TreeModel treeModel = grid.getTreeModel();

 int row = 2;

 Item man = treeModel.getChildAt(treeModel.getRoot(), 0);

 for (int i=0;i<treeModel.getChildrenCount(man); i++)

 {

 Item item = treeModel.getChildAt(man, i);

 Object obj=LwManager.getStaticObject((String)item.getValue());

 matrixModel.put (row, 1, obj.getClass().getName());

 row++;

 }

 Item sobj = treeModel.getChildAt(treeModel.getRoot(), 1);

 row++;

 for (int i=0;i<treeModel.getChildrenCount(sobj); i++)

 {

 Item item = treeModel.getChildAt(sobj, i);

 Object obj = LwManager.getStaticObject((String)item.getValue());

 matrixModel.put (i + row, 1, obj.getClass().getName());

 }

 }

}
	Creates the second column with the class name.

Fills the second tree grid column with the corresponding class names.

Gets grid model.

Gets current tree model.

Defines starting row.

Gets manager item from the tree model.

Goes through the manager’ child items to get corresponding object instance, determine the instance class and set the class name to the grid model (for the second column and the row that corresponds to the tree model item).

Gets the static objects item from the tree model.

Goes through the static object’s child items to get appropriate object instance, determine the instance class and set the class name to the grid model (for the second column and the row that corresponds to the tree model item).

The result is shown below:

[image: image15.png]At the next step we will add third column to the tree grid that will show a view bound with the static object if it is possible. To render the third column cells it is necessary to implement special view provider for the tree grid component (since the default tree grid render cannot render views) class as follows (red color indicates additional changes that had been made on this step):

	public class LwPropertiesViewer

extends LwPanel

{

 public LwPropertiesViewer(Hashtable p)

 {

 TreeModel treeModel = createTreeModel(p);

 LwTreeGrid treeGrid = createTreeGrid (treeModel);

 createTreeGridModel(treeGrid);

 for (int i=0; i < treeGrid.getCols(); i++)

 treeGrid.setColWidth(i, 180);

 treeGrid.setViewProvider(new LwCellViewProvider());

 add (LwBorderLayout.CENTER,

 new LwScrollPan(treeGrid));

 }

 …

 protected void createTreeGridModel(LwTreeGrid grid)

 {

 …

 Item sobj = treeModel.getChildAt(treeModel.getRoot(), 1);

 row++;

 for (int i=0;i<treeModel.getChildrenCount(sobj); i++)

 {

 Item item = treeModel.getChildAt(sobj, i);

 Object obj = LwManager.getStaticObject((String)item.getValue());

 matrixModel.put (i + row, 1, obj.getClass().getName());

 matrixModel.put (i + row, 2, obj);

 }

 }

}
	Sets the custom view provider.

Adds instance of the static object to the third column.

The custom tree grid view provider can render views instances if it is necessary. The provider code is shown below:

	public class LwCellViewProvider

extends LwDefViews

{

 LwCanvas target = new LwCanvas();

 LwCompRender render = new LwCompRender(target);

 public LwView getView(int row, int col, Object obj)

 {

 if (col == 2)

 {

 if (obj instanceof LwView)

 {

 LwView view = (LwView)obj;

 if (view.getType() != LwView.ORIGINAL)

 {

 target.getViewMan(true).setView(view);

 Dimension d = view.getPreferredSize();

 target.setPSSize(d.width, d.height);

 return render;

 }

 else return view;

 }

 else return super.getView(row, col, "---");

 }

 else

 if (col == 1) return super.getView(row, col, obj);

 return null;

 }

}

	The view provider extends standard view provider.

Defines target object and his render.

Tests if the column number is 2 and the object instance is LwView.
Checks if the view type is not ORIGINAL. In this case the view is set for the target canvas. This is necessary to render the view using it preferred size not .

Returns view as is.

Returns “---” string if the object cannot be rendered (if the object doesn’t represent any view)

If the column number is 1 than the view works as the LwDefViews view provider.

The final application is shown below:

See the “org/zaval/lw/samples/LwPropertiesViewer.java.java”

[image: image16.png]
Support available

If you feel this document does not cover any important issues – let us know. You can request additional teaching materials and support from our team – drop a mail to support@zaval.org with subject line set to “LwVCL: teaching materials”.

© Zaval Creative Engineering Group, 2001-2002. All rights reserved.

http://www.zaval.org

