

Zaval Light-Weight Visual Component
Library
Version 3.0

Tutorial

Zaval Creative Engineering Group
http://www.zaval.org

Contents

Introduction to the Zaval Light-Weight Visual Components Library... 3
Is it difficult to use the library? ... 3
Architecture. ... 4
Deploying lightweight library.. 8

Lightweight library packages... 9
Deploying steps .. 9
Lightweight properties file format... 9

Lightweight Component. ... 10
Abstraction ... 10
Lightweight component ... 11
Lightweight container.. 13
Lightweight painting.. 13
Lightweight view management .. 15
Lightweight events concept... 16
Lightweight validation.. 18
Lightweight static objects .. 18
Lightweight scrolling ... 18
Lightweight applications.. 19

Support available .. 19
Stay informed! .. 20

Tutorial 3
Zaval Light-Weight Visual Component Library

© Zaval Creative Engineering Group, 2001-2002. All rights reserved.
http://www.zaval.org

Introduction to the Zaval Light-Weight Visual Components Library

Zaval Light-Weight Visual Components Library (LwVCL) is a pure Java alternative to humble
AWT-based GUI interfaces for wide ranges of platforms such as PersonalJava and J2SE.

Designed as light-weight but built separately from AWT (not on top of the java.awt library like

Swing), the LwVCL is the good alternative to highly performant, memory-efficient, flexible GUI solution for
embedded, stand-alone and applet applications.

LwVCL can be used on wide range of PersonalJava compatible devices, including iPAQ, Zaurus

and top models of mobile phones with the same API as it is used in J2SE application; our library is most
efficient way to develop highly scalable GUI applications from PersonalJava to any J2SE applications.

Is it difficult to use the library?

The best way to demonstrate the library usage is a good sample. The table below shows very
simple examples that have been created using the lightweight library (left column) components and Java
AWT components (right column).

A user using the samples can add (using button “Add”) content of a text field into the list.

Lightweight sample code

AWT Sample code

import org.zaval.lw.*;
import org.zaval.lw.event.*;

public class LwDemo
implements LwActionListener
{
 static LwList list = new LwList();
 static LwTextField text = new LwTextField ("Demo", 10);

 public static void main(String[] args)
 {
 LwFrame frame = new LwFrame();
 frame.setSize(200, 200);
 LwContainer root = frame.getRoot();
 root.setLwLayout(new LwGridLayout(3,1));
 LwButton button = new LwButton("Add");
 button.addActionListener(new LwDemo());
 root.add(text);
 root.add(list);
 list.setPSSize(100, 70);
 list.getViewMan(true).setBorder(new LwBorder(2));
 root.add(button);
 frame.show();
 }

 public void actionPerformed(LwActionEvent e) {
 list.add(new LwLabel(text.getText()));
 }
}

import java.awt.*;
import java.awt.event.*;

public class AwtDemo
implements ActionListener
{
 static List list = new List();
 static TextField text = new TextField("Demo", 10);

 public static void main(String[] args)
 {
 Frame frame = new Frame();
 frame.setSize(200, 200);
 frame.setLayout(new FlowLayout(FlowLayout.LEFT));
 Panel pan = new Panel();
 pan.setLayout(new BorderLayout());
 Button button = new Button("Add");
 button.addActionListener(new AwtDemo());
 pan.add(BorderLayout.SOUTH, button);
 pan.add(BorderLayout.CENTER, list);
 pan.add(BorderLayout.NORTH, text);
 frame.add(pan);
 frame.setVisible(true);
 }

 public void actionPerformed(ActionEvent e) {
 list.addItem(text.getText());
 }
}

Lightweight demo application

AWT demo application

Tutorial 4
Zaval Light-Weight Visual Component Library

© Zaval Creative Engineering Group, 2001-2002. All rights reserved.
http://www.zaval.org

These two examples are practically the same, so there are no problems for Java AWT programmers

to use the Zaval Light-Weight Visual Components Library. Take care that even the simple example shows
some powerful features of the library:
• The lightweight list component uses other components as list items, but the AWT list component can

have only strings as item.
• The lightweight component provides setPSSize(int, int) method to control preferred size, but AWT

component has fixed preferred size, so it is impossible to control preferred size of the Java AWT
components.

• The lightweight component provides special view manager to customize the component view. In this
example the view manager is used to set border view for the list component.

Architecture.

The core idea is to reject java.awt.Component inheritance. The library provides LwComponent
interface that is basic for all components of the library, instead of java.awt.Component. The library
architecture is shown below.

Tutorial 5
Zaval Light-Weight Visual Component Library

© Zaval Creative Engineering Group, 2001-2002. All rights reserved.
http://www.zaval.org

The lightweight library has three levels:
1. Level 0 (Native). This is Java AWT area. In common case the level represents a Java UI

implementation. As rule this level provides java.awt.Graphics, java.awt.Image, java.awt.Canvas
or their analogues. Actually it is enough for Adaptive level to be easy implemented.

2. Level 1 (Adaptive). This level adapts native events to appropriate lightweight events, provides
ability to work with graphical context and has a set of native-specific methods that are necessary
for the library. LwDesktop adaptive class is responsible for native events conversion process and
it provides set of methods to work with a graphical context. LwToolkit adaptive class provides set
of native-dependent methods. This level is very important to use the library on other systems that
have their own Java UI implementations (for example portable devices). To adapt the library it is
necessary to re-implement the level classes and you shouldn’t touch lightweight components set.

3. Level 2 (Light Weight). This is a core level. This level provides all classes and components that
are necessary to develop your own systems and components based on the lightweight library.
Level can be divided as follows:

a. Lightweight components. This is set of widespread GUI components that are ready to be
used. The list of the components is shown in the table below:

GUI Component

Short Description

LwCanvas
This component implements LwComponent interface and should be

Tutorial 6
Zaval Light-Weight Visual Component Library

© Zaval Creative Engineering Group, 2001-2002. All rights reserved.
http://www.zaval.org

used as the base for development own lightweight components. This
is something like java.awt.Canvas component.

LwPanel

This component implements LwContainer interface and should be
used as the base for development own lightweight container. This is
something like java.awt.Panel component.

LwLabel

This component is used to show text messages (including multi-line
text).

LwButton

The button component that can use images, labels and other
lightweight components as a caption.

LwCheckbox

Checkbox component. The component is used to organize radio
group, checkboxes.

LwBorderPan

The border panel is used as decorative panel that can have other
component as a title. The title can have following alignment: top,
bottom, left, right, center.

LwLink

The text link component. It is like a text html link.

LwImage

This component is used as a canvas to show images (“gif” and “jpg”).

LwStButton

This is toolbar button component.

LwList

This is list component. The component uses other components as list
items and can be used with different layouts that implement special
interface (for example list and grid layouts).

LwCombo

This is combo box component. The component can use other
components as list items.

LwTextField

This is text field component. The component can be used to enter
single line text, multilane text, fixed size text, password text. Starting
from version 1.1 the component provides block operations (it is
possible to select and put data into clipboard, get and insert clipboard
text).

LwSplitPan

This is splitter panel. The component can be used to split two
components and place the components inside sizeable areas. The
splitter can have horizontal or vertical alignment.

LwNotebook

This is notebook component. The component supports different
alignments for notebook tabs (top, bottom, left, right).

Tutorial 7
Zaval Light-Weight Visual Component Library

© Zaval Creative Engineering Group, 2001-2002. All rights reserved.
http://www.zaval.org

LwScrollPan

This is a scroll panel. The component can be used to organize
scrolling for any lightweight component.

LwScroll

This is scroll bar component. The scroll bar can have horizontal or
vertical orientation.

LwTree

This is tree view component that can be used to render and navigate
along tree-like structure.

LwStatusBar

The component can be used to organize status bar panel that
consists of other lightweight components.

LwProgress

The component can be used to show progress status for some
actions.

LwGrid

The component is powerful grid component to render matrix data
model. The component has been designed basing on MVC model. It
is possible to customize cell rendering, cell editing processes.

The light weight extra package components

(This package is delivered as a separated product)

LwTreeGrid

The component bases on LwGrid component functionality and is used
to render two bound data model: tree data model and matrix data
model.

LwSpin

The spin component allows input bound integer value.

LwMaskTextField

This component is text field that allows input according to a mask. It is
possible to use letter, numeric, date mask. The component provides
set of classes to implement own mask handlers quickly.

LwWindow

This component is supposed to be used as internal frame.

b. Lightweight managers. The LwEventManager is the basic manager for the library. The

manager defines message delivering strategy and should be defined for the library.
Another important manager is a paint manager. The manager is used with the lightweight
component implementation to paint itself. The managers can be listeners for different
lightweight events. For example, focus manager should listen mouse event to pass focus
between components. The managers are initialized with lightweight manager
(LwManager). Any managers can be overwritten by anybody. The manager deployment
concept is powerful and easy to use (See chapter - “Lightweight library deploying”). The
table below shows set of managers that is implemented and used with the library.

Tutorial 8
Zaval Light-Weight Visual Component Library

© Zaval Creative Engineering Group, 2001-2002. All rights reserved.
http://www.zaval.org

Lightweight Manager

Short Description

LwEventManager

This is core manager for the level. The manager connects the
Level 2 with the Level 1. The main purpose of the manager is to
determine event delivery strategy. All lightweight events are
passed to the manager and only the manager can distribute the
event according event distribution strategy. Lightweight events can
be performed with components, other lightweight managers and
Level 1. The manager provides listener supporting that can be
used with other lightweight managers or components.

LwPaintManager

(LwPaintManImpl)

The manager is responsible for lightweight components painting.
The implementation of the manager uses double buffering to
speed up lightweight components painting and supports
component transparency and views.

LwFocusManager

The manager controls focus for components that can be used as
input (buttons, text fields and so on). To do this it implements
Focusable interface. The manager is registered as a mouse and
keyboard listener. To “jump” through components you can use
both mouse down event and “TAB” key.

LwCursorManager

The manager controls mouse cursor status. The lightweight
component interface has no methods to support cursor changing,
but the manager allows integration of the cursor management
without changing the core lightweight component interface.

LwClipboardMan

The manager is used to store and fetch data from the clipboard.
The lightweight clipboard implementation has no relations with the
system clipboard, so it is impossible to exchange data between
other application and the lightweight components. But, it is very
easy to implement own clipboard manager based on
java.awt.datatransfer.Clipboard Java AWT class.

LwPopupManager

The manager allows specified java.awt.PopupMenu binding with
the lightweight component. The lightweight component interface
has no methods to support popup menu, so this manager allows
popup menu management integration without changing the core
lightweight component interface.

So, LwVCL has 3-Tier architecture that separates functionality on three independent levels. This feature
makes easier porting the library to other systems (portable devices, for example) and makes the library
more flexible. The library event distributing mechanism can be easily modified according to the user
requirements.

Deploying lightweight library.

Tutorial 9
Zaval Light-Weight Visual Component Library

© Zaval Creative Engineering Group, 2001-2002. All rights reserved.
http://www.zaval.org

Lightweight library packages

Library itself has the following structure (see lw.jar):
• org.zaval.lw – lightweight library GUI components.
• org.zaval.lw.event – lightweight library events.
• org.zaval.lw.tree – lightweight library tree view component.
• org.zaval.lw.mask – lightweight library masked text field component.
• org.zaval.lw.grid – lightweight library grid view component.
• org.zaval.lw.rs – lightweight library resources.
• org.zaval.lw.rs.tree – images that are used for tree view component.
• org.zaval.lw.rs.misc – different images (arrows, scroll background and so on).
• org.zaval.* – other useful packages.

The org.zaval.lw.rs contains lightweight properties file (lw.properties) that is used with LwManager

to get information about lightweight managers and static objects that have to be deployed. LwManager
reads and parses the file before deploying.

Deploying steps

The main actor of the deploying process is LwManager. The class has static section that starts the
deploying process of the library. Actually, the class does the following two actions:

1. Creates and initializes LwEventManager (this is a core manager) and other lightweight mangers.
LwManager creates instances of all lightweight managers and registers the managers as event
listeners if it is necessary. A manager has to be registered as LwEventManager listener if the
manager implements appropriate listener interface, so it is not necessary to think about
registering as listener, this will be done with LwEventManager automatically.

2. Creates and initializes static objects. Static object is an object whose functionality can be shared
safely with other objects. It means that it is not necessary to have several instances such objects,
it is possible to create one instance and other objects can use the instances. The static object
concept helps the library to decrease system resource usage and increase performance. To get
instance of a static object the getStaticObject(Object key) static method of LwManager should be
used. LwManager has a hash table to store static objects instances that can be accessible by a
key. The key should be determined by properties file tag (obj.<name>.key).

Lightweight properties file format

The lightweight properties file is named as “lw.properties” and stored in org.zaval.lw.rs package
directory. The file has simple format, actually it consist of pairs
<propertyName(.subPropertyName)*>=<value>.The table below describes basic sections of the file.

Static object information part

obj

The section is a list of static objects sections names that will be used to create static
objects instances. For example: “obj=border, image1” means that LwManager has to
create two static objects, that are described with “obj.border.*” and “obj.image1.*”
sections.

obj.<name>.cl

This is class name for a static object named “<name>”. The class name can be
determined relatively org.zaval.lw package name.

obj.<name>.arg

List of arguments that have to be used to construct an instance of the object. The
arguments have to be separated with comma. It is possible to use three types of the
arguments:

Tutorial 10
Zaval Light-Weight Visual Component Library

© Zaval Creative Engineering Group, 2001-2002. All rights reserved.
http://www.zaval.org

1. Integer. An integer argument is an integer number (that is not bound with the
quotes).

2. String. A string argument should be in quotes (for example: obj.border.arg=”This
is string argument”).

3. Boolean. The boolean argument can have true or false (which are not bound with
the quotes) as argument value (for example obj.border.arg=true).

If the property file doesn’t contain the arg section for a static object than LwManager
will try to use default construct to create the static object instance.

obj.<name>.key

A key of the static object. The section determines a key that has to be used to get
instance of the static object.

Managers information part

man

The section is a list of manager names (the names will be used as sections names
in the properties file) that will be used to create the managers instances. For
example: man=paint, focus means that LwManager has to create two managers
that are described with “man.paint.*” and “man.focus.*” sections.

man.<name>.cl

man.<name>.arg

The usage of the sections are similar to the “obj.<name>.cl” and “obj.<name>.arg”
sections. See the previous table.

man.event.cl

The section determines class name for a core event manager. The manager will be
used as an event distributor and a destination for all lightweight events that are
performed with Level 1. The class name can be determined relatively org.zaval.lw
package name.

Lightweight Component.

Abstraction

Let’s consider the abstraction component (GUI) definition. Actually there are three core notions
(see image below):

Tutorial 11
Zaval Light-Weight Visual Component Library

© Zaval Creative Engineering Group, 2001-2002. All rights reserved.
http://www.zaval.org

• View. View is like “face”. View is used to reflect the component state and view allows a user to
interact with the component.

• Validation. Validation is bound with different metrical parameters (preferred size, fonts, and so
on). The parameters are used to render and layout the component. A GUI component can be
shown if it has valid status.

• Events. Events are like “blood” that makes the GUI Component “alive”. A GUI component can
receive, handle and perform different events.

As rule the three notions depend on each other, the image above shows these dependences by
intersection three notion-circles. The concept is simple, but it helps to understand library ideas correctly.

Lightweight component

Lightweight component is a component that implements LwComponent interface. Draw attention that
light weight component has no relations with java.awt.Component (like AWT or SWING components).
So the lightweight component is “real” lightweight component that rejects any relationships with the
“native” java.awt.Component. This approach helps to solve following problems:

• Hard coded view. It is impossible to inherit, for example, java.awt.TextField component to re-
implement some functionality, because this is not lightweight component. Actually the component
is a wrapper for a system GUI component and it is practically impossible to change its behavior.

• Slow painting and creating process. Try to use a large number of Java AWT components in a real
project. An application will work extremely slowly (actually, it is impossible to use big number of
Java AWT components).

• The set of the Java AWT components is not enough for real applications development.

The SWING library is more powerful than Java AWT library, but it’s very greedy to the system
resources (have a look to the memory usage). Moreover, SWING components are based on AWT
components (java.awt.Component). The big size of the library makes it useless for mobile devices and
thin clients (the client has to download the whole package, or install special plug-in to his browser).

In addition, the library provides lightweight container interface - LwContainer. Usage of the simplest
implementation of this interface (LwPanel) is practically identical to java.awt.Container usage. Before
we’ll go to the description of the lightweight component let’s define basic lightweight determinations:

Det. 1: Validation – a lightweight component is valid if all metrical characteristics are defined and
calculated. For example, if a text is changed for LwLabel component than it is necessary to recalculate
size of the new text. The new size will be used to calculate preferred size of the component.

Det. 2: Transparency – a lightweight component is transparent if painting process doesn’t use a
background of the component. In this case the component uses a parent background.

Det. 3: Preferred size – this is size that a lightweight component “wants” to have plus the component
insets. Preferred size depends on validation status, only a valid component can have correct preferred
size.

Det. 4: Clip Area – this area where painting is possible. Rendering operations have no effect outside of
the clipping area.

Det. 5: Insets – this right, left, top, bottom indents that determine clip area for painting process. If a
component has size - (w, h), location - (x, y) and insets - (left, right, top, bottom) than it will have the
following clip area: (x + left, y + top, w – left – right, h – top - bottom).

Det. 6: Origin – this is a component view offset. Origin defines how the component view has to be offset
relatively the component point zero-zero (basis of coordinate system). This is useful to organize scrolling.

Tutorial 12
Zaval Light-Weight Visual Component Library

© Zaval Creative Engineering Group, 2001-2002. All rights reserved.
http://www.zaval.org

Det. 7: Enablement – Enablement determines ability to receive, handle and perform events for a
component. Only enabled component can be a member of event distribution process.

The table below shows basic properties of the lightweight component:

Property

name

Methods Description

size

Dimension getSize()
setSize(int, int)

The property determines size of the component. If the
component is a child of a container that layouts children
according to preferred size than it is impossible to
determine size of the component by the method
setSize(int, int) (see chapter Lightweight container to
understand the layout algorithm)

location

Point getLocation()
setLocation(int, int)

The property determines location of the component
inside a container. The parent container can set the
location for their children by a layout manager, so it
may be impossible to set a location using the method
setLocation(int,int)

preferred size

Dimension getPreferredSize()
setPSSize(int, int)

The property defines a preferred size of a component.
There are two abilities to set a preferred size:

1. The preferred size is calculated according to
metrical characteristics (LwComponent) or
according to a layout manager implementation
(LwContainer).

2. The preferred size can be fixed by
setPSSize(int, int) method. If it is necessary to
discard from the fixed preferred size, use “-1”
value for appropriate argument (width or
height) of the method.

opaque

boolean isOpaque()
setOpaque(boolean)

If the property is “false” the component is transparent.

visibility

boolean isVisible()
setVisible(boolean)

If the property is “true” the paint manager will render
the component and a parent container will layout one.

enable

boolean isEnabled()
setEnabled(boolean)

If the property is “true” the component will participate in
event distribution process.

validation

boolean isValid()
validate()

If the property is “true” the component is valid. To
perform validation process use validate() method. A
container component is responsible for validation status
of its children components.

insets

Insets getInsets()
setInsets(top, left, bottom,
right)

The property defines insets for a component.

Tutorial 13
Zaval Light-Weight Visual Component Library

© Zaval Creative Engineering Group, 2001-2002. All rights reserved.
http://www.zaval.org

origin

Point getOrigin()

The property defines an origin for a component.

background

Color getBackground()
setBackground(Color)

The property defines a background color that will be
used to fill background of the component (if the
component is not transparent)

Lightweight container

Lightweight container is a lightweight component that can have other components as children. The
library provides the container interface - LwContainer and of course, has implementation of the interface
- LwPanel that is ready to use. The usage of the lightweight container is similar to java.awt.Container
usage, but there are two essential differences:
• A layout manager has to be always defined for the lightweight container. Java AWT allows going

even without layout manager usage, but you can face with problems trying to combine layout and
non-layout ways in AWT application. But it doesn’t mean that it is impossible to layout lightweight
components using sizes and locations specified by the setSize(int, int) and setLocation(int, int)
methods. The library provides special layout manager - LwRasterLayout - for this purpose. The
complete set of layouts that go with the library by default is shown in the table below:

Layout

Short Description

LwBorderLayout

This is analog of java.awt.BorderLayout.

LwGridLayout

This is like a mix of java.awt.GridLayout and java.awt.GridBagLayout layouts

LwRasterLayout

The layout manager uses location and size that have been set with setLocation(int,
int) and setSize(int, int) methods or the layout uses preferred sizes of the child
components. Special boolean flag (that passed as argument during initialization of
the layout) points what size (preferred of set with setSize(int, int)) should be applied
for child components.

LwFlowLayout

This is like a java.awt.FlowLayout but it has some additional features.

LwListLayout

The layout is created for LwList component.

• The next difference is the lightweight layout manager is designed to layout Layoutable components

inside LayoutContainer. It means that lightweight layout managers can be used for other
components (even non-GUI components) that implement two interfaces (Layoutable and
LayoutContainer), not only for lightweight components. At the same time Java AWT layout
managers cannot be reused outside Java AWT Library.

Lightweight painting

Any lightweight component has a view. There are two ways to implement lightweight component view:
• Lightweight component provides two methods that can be overridden: paint (Graphics g) and

update(Graphics g). First method is used to paint view of the component and the second method for

Tutorial 14
Zaval Light-Weight Visual Component Library

© Zaval Creative Engineering Group, 2001-2002. All rights reserved.
http://www.zaval.org

updating the component area (filing with the background color). It’s not specific - it is the same Java
AWT painting component algorithm.

• Lightweight component has a view manager. The manager can be used to determine view for the
component dynamically. The library provides set of ready views (border, image, text and so on) that
can be used for the purpose (see the next chapter to understand the view management concept)

The two ways are demonstrated in the table below:

Painting methods overriding

View manager usage

public class MyComponent
extends LwCanvas
{
 public update (Graphics g)
 {
 Dimension size = getSize();
 g.setColor(Color.red);
 g.fillRect(0, 0, size.width, size.height);
 }

 public paint (Graphics g) {
 g.setColor(Color.black);
 g.drawString(“This is my view”, 20, 20);
 }
}

LwComponent c = new LwCanvas ();
LwViewMan m = c.getViewMan(true);
m.setBorder(new LwBorder(LwBorder.PLAIN));
m.setBg(new LwImgRenderer(“myBg.gif”)) ;
m.setView(new LwTextRenderer(“This is my view”));

Lightweight component provides repaint method. This method initiates repainting process.

Lightweight component has no specific implementation for this method - it just calls appropriate method of
lightweight paint manager that knows how the components should be painted. Current implementation of
the library paint manager supports the following features:
• Double buffering. It means that lightweight components are painted using memory buffer and after

that the memory buffer is painted on a visible surface. The feature allows avoiding blinking and
improves painting performance. However, double buffering can be toggled off with special method of
the paint manager.

• Component transparency. Any lightweight component can be transparent. It means that the
component has no background. In this case a parent component background will be used as the child
background.

• View manager supporting. View manager is special class that determines “face” of the component
by a set of views. View is a class that provides painting rules. The feature allows using view for any
lightweight component with no changes to the component functionality. To get more information
about view management and view creating see chapter Lightweight View Manager.

Lightweight paint manager implementation uses following algorithm to draw a component:

1. Validates a component if it is necessary.
2. Calls update(Graphics) method if the component is not transparent (a component is transparent if the

method isOpaque returns “false”). If the component is transparent and has a view manager which
defines a background view than the view will be used as the component background (in this case
update(Graphics) method is not called), if the component has no background view than the
background color will be used to fill the component area.

3. If the component has a view manager than the paint manager paints a border view and a face view (if
these views are determined).

4. Calculates clip area. The clip area is calculated as intersection of the component size (minus the
component insets) and current clip bounds.

5. If the component determines own origin by Point getOrigin() method than the paint manager sets the
new origin. Origin can be used if it is necessary to shift the component image (for example the feature
is used to organize scrolling for LwTextField component).

6. If the component has a view manager and the view manager determines a “face” view than paint
manager draws the view.

7. Calling paint(Graphics) method of the component

Tutorial 15
Zaval Light-Weight Visual Component Library

© Zaval Creative Engineering Group, 2001-2002. All rights reserved.
http://www.zaval.org

If the component has a child component (in this case the component is a container) than the paint

manager computes clip area, transforms point of origin accordingly the child location and performs
painting process for the child as described above. The process is repeated for all visible child
components.

Lightweight view management

First of all let’s understand what the view is. Very often it is necessary to solve two tasks:
1. Painting decorative elements. Practically every GUI component uses some decorative elements

as a part of its “face”. For example a checkbox component has toggle element, every
components can have border or complex background (image). So, it is necessary to have ability
to control the view (for example, if somebody wants to have other view for a checkbox toggle
element). Java AWT library components have not ability to change view dynamically, as the Java
AWT components views are hard-coded with paint(Graphics) method. In this case if you want to
change a component view, it is necessary to inherit the component and override the
paint(Graphics) method. The lightweight library provides special abstract class - LwView to
implement own views. Views can be used as a part of “face” for a given lightweight component
with a view manager of the component.

2. This is very important to have ability to paint different objects (images, text and so on). The
library provides special abstract class LwRender. The class inherits LwView class and this is a
variation of a view that has been described above. The main difference of the render from the
view is the render is bound with an object and it is used to paint the object. Actually, render is
bound view.

The second question is views and renders usage. For this purpose lightweight component has a

view manager. The manager provides ability to determine 3 view types:
• border view – the view will be used to paint a component border
• background view – the view will be used to paint a background (for example it is possible to

use an image as a component background)
• face view – the view will be used as a face of the component (for example LwLabel

component uses LwTextRender as the face view)
The library provides advance view manager that can be used to support dynamic view changing. The

main feature is that manger can contain set of named views for a component face. The name of a view
determines state of the component at the moment.

For example LwButton component uses advanced manager to define two named views: “button.on”
and “button.off”. In this case, “button.on” name correspond to button pressed state and the button uses a
view that is bound with the name, otherwise will use “button.off” view.

The last question is a view painting process. To define your own view it is necessary to inherit

LwView or LwRender class and determine paint method for the class. The method is called with a paint
manager. The paint manager passes graphics, location - where the view has to be drawn, size - that has
to be used and an instance of object - for which the view is painted. The view can be painted with three
manners according to the view type:

1. The view has ORIGINAL type. In this case, the paint manager passes preferred size of the view
as the view size and insets.left, insets.top as the location.

2. The view has STRETCH type. In this case, the paint manager passes size of an owner
component for which the view is drawn, location is (0, 0). The type is used to stretch view image
along the owner component surface.

3. The view has MOSAIC type. In this case, the paint manager passes preferred size of the view as
the view size, but the view will be painted as many times as it can be placed inside the
component area, the view location will be calculated for every time. The type is useful if it is
necessary to define background pattern (for example using image pattern) for a component.

The table below shows views and renders that go within this library:

View/Render

Short Description

LwBorder

Tutorial 16
Zaval Light-Weight Visual Component Library

© Zaval Creative Engineering Group, 2001-2002. All rights reserved.
http://www.zaval.org

This view provides set of different borders that can be used as border view for a
component. The view is used to define a component border. It is not necessary to
create own border view instances, because the library stores the border set as set
of static objects instances that are available (use LwManager) by following keys:
“br.etched", "br.raised", "br.sunken", "br.plain", "br.dot".

LwTitledBorder

This view functionality is based on LwBorder view and it can be used to paint a
border with a title area.

LwBoxView

The following view is a face of checkbox and radio box toggles.

LwImgRender

This render is used to paint an image (target is java.awt.Image).

LwTextRender

The following render is used to paint a text (target is org.zaval.data.Text).

LwPasswordText

This render is used to paint a password text (it is based on LwTextRender).

LwAdvTextRender

This render inherits LwTextRender to support block painting.

LwCompRender

This render is used to paint a light weight component (target is
org.zaval.lw.LwComponent).

LwWrappedText

This render is used to paint wrapped text. The render brakes a text line if the line
cannot be placed inside the drawable area wholly.

LwBundleView

This is bundle element view. It is used by scroll bar component to paint bundle.

LwCursorView

This is text cursor view that is used by text field component.

Lightweight events concept

This is a very important chapter. The library uses listener concept like Java AWT or SWING libraries.
It means that if you want to handle an event than it is necessary to register appropriate event listener. The
events and listeners are much like in AWT library (see package org.zaval.lw.event.*) and hope, you’ll get
it easily. But there are several key differences:

• First of all, lightweight component has no listener support. The lightweight component doesn’t
implement event distribution functionality and this is really good, because event distribution is
concentrated in one place - event manager. This way has one more advantage: it decreases
memory usage because lightweight component doesn’t contain list of listener (listeners support).
It’s very simple: if you want to catch events inside your lightweight component, it is necessary to
implement appropriate listener interface and event manager will immediately send events to the
component. For example, to catch mouse events inside your component, you should implements
LwMouseListener. As it was described above, a lightweight component doesn’t provide listeners
support for mouse, key, component, container, focus and so on events unlike a Java AWT
component. But it is possible to handle all these tasks using LwEventManager, by registering

Tutorial 17
Zaval Light-Weight Visual Component Library

© Zaval Creative Engineering Group, 2001-2002. All rights reserved.
http://www.zaval.org

appropriate listener - your listener will get appropriate events for all components, so if you want to
listen the events for certain lightweight component you should test sources of the events.

• The lightweight library provides mechanism to control input child events. The input event is an
event that is initiated by mouse, keyboard or any other input device. This is very important to
have this feature for creating composite components. Composite component is a component that
consists of several components that have to work together. For example LwButton is a
composite component. The button component can have other components (including any other
composite component) as a child. The problem, in this case, is following: if a mouse button has
been clicked over any child component, the button mouse listener will not get the mouse event
and so cannot handle it. There are two ways to resolve the problem:

1. Register mouse listener for any button child component using the event manager listener
support. It allows children mouse event listening and handling inside the button. This
solution is like Java AWT (but in this case it is necessary to test if the event source of the
event is the child of the composite component), but this way doesn’t solve the problem if
you want to use other composite component as a child (in this case you cannot control
such child component).

2. Another way is provided with the lightweight library, Java AWT hasn’t anything like that.
The main idea is that parent component can control input events distributing process for
child components. In this case the parent component should implement LwComposite
interface and at the moment the event manager will “ask” the composite component if the
child component input events should be caught by the parent or not. If the composite
component says that he wants catch child input events, lightweight event manager
distributes the event as if the child component doesn’t exist. The child becomes
“transparent” for input events. The image bellow illustrates the composite components
mechanism (for more info see chapter Creating composite component):

1. First, the LwDesktop (this is lightweight top-level container for all other lightweight components) gets
native input event (mouse event) and converts this event to appropriate lightweight event.

2. LwDesktop asks the LwEventManager what lightweight component is a source of the event based
on its location.

Tutorial 18
Zaval Light-Weight Visual Component Library

© Zaval Creative Engineering Group, 2001-2002. All rights reserved.
http://www.zaval.org

3. LwEventManager defines the source according to the location.
4. LwEventManager tries to find if the source component has a composite parent component.
5. If the parent composite component is exist than LwEventManager asks it (by executing catchInput

method) whether the child input event should be caught by the composite component or not.
6. LwEventManager distributes the input event to the composite component or the child component

depending on the previous step.

The algorithm is recursive, so it will work fine if there are several composite components in a hierarchy.

Lightweight validation

Validation is also important part of lightweight component lifecycle. In compliance with validation
notion only valid component can be laid out and painted. The main purpose of the validation process is to
calculate the component metrics. The metrics define a preferred size and the preferred size is used to
layout the component inside with a layout manager of a parent container. The library provides two types
of lightweight components and accordingly two ways to calculate component metrics:

• LwComponent (LwCanvas), LwView, LwRender. The interfaces determine simple lightweight
component and views. In this case validation process calls recalc() method to compute
component and view metrics. To perform a validation process you should not call the method
directly, it is necessary to call validate() method of the lightweight component or view and after
that, if the component is not valid recalc() method is called. It means that recalc() method will be
executed only if it is really necessary. It allows avoid redundant calculation of the component
metrics.

• LwContainer (LwPanel), LwViewMan. These interfaces and classes determine components
and views containers. The main difference is that a container metrics are defined by children
components, so you should not override recalc() method and perform any metrics calculation.
Draw attention that a container component is responsible for children validation. It means, if a
validation process is performed for a container with validate() method than the validation process
will cover every child component.

Lightweight static objects

The library has special type of objects – static. The static object is a class whose instance can be
used safely with several other classes. For example, lightweight component view manager has method to
define a border view, but there are only several types of borders and it is not necessary to create the
same border view instances for different components. In this case, we can have set of border view
instances and use one border view instance for several lightweight components according to the border
type. The static object concept is used to decrease system resource usage.

Let’s define the notion of the static object, what class can be used as a static? It is evidently, that
static class instance should not allow any properties changes, because the same instance is shared
between other classes. The static object for the lightweight library has to comply with following:
• Any properties changes for static object instance are not allowed. All properties should be defined

during construction of the instance.
• To use the static object instance it is necessary to describe the static object in lightweight properties

file (static object section). And only after that the instance will be available for LwManager class.
• It is possible to use integer, string and boolean argument types for static object constructor input, so

only these types can be used for static object constructors.
• The library identifies an instance of the static object by the instance key (to get the instance it is

necessary to know the key). The key is defined in the corresponding section of the lightweight
properties file.

Lightweight scrolling

Actually, there are two ways to organize scrolling for a GUI component:
• By changing the component location inside the component container
• By moving a view of the component.

Tutorial 19
Zaval Light-Weight Visual Component Library

© Zaval Creative Engineering Group, 2001-2002. All rights reserved.
http://www.zaval.org

The library supports both ways. The basic rules that you should use to implement component
scrolling are shown below:
• Use org.zaval.misc.ScrollObj interface to provide appropriate scrolling mechanism, the interface will

be used with the scroll panel (LwScrollPan) to scroll the component.
• Use getOrigin if it is necessary to move a view for the component. The method tells the library

(actually, paint manager) how the component view should be moved relatively to the component
origin.

• Use getLayoutOffset method if it is necessary to scroll child components inside the container. The
method points a layout manager how the child components should be moved.

Lightweight applications

 This chapter describes lightweight application components. By “lightweight application” we mean
java applet and standalone applications. Any light-weight application consists of two parts:

1. Desktop. The term means top level container that is parent for all other lightweight
components. As rule the container is used to reside all other components of a lightweight
application. The implementation of the Desktop is represented with LwDesktop class.

2. Windows. Desktop provides ability to open, close, activate window components. It is
possible to use any lightweight component as the window. For example, combobox
component shows popup pad as the lightweight window. Moreover the library provides
LwWindow component that is much like “classical” window. Draw attention that any desktop
window cannot be rendered outside the desktop area, that is this is like Java SWING internal
frames implementation.

The next question is how to create a light weight application. To create a standalone application

you can use LwFrame class. This is not a light-weight component, actually this is an extension of
java.awt.Frame class where the desktop is resided. To get the desktop uses LwFrame.getRoot method.
The sample bellow illustrates this class usage:

…
LwFrame frame = new LwFrame();
frame.setSize(400, 400);
LwContainer root = frame.getRoot();
root.add(new LwButton(“Button 1”));
…
frame.setVisible (true);
…

The library doesn’t have something like LwFrame for creating lightweight applet, but anywhere it very
easy, see the sample bellow:

 …

public class MyApplet
extends java.applet.Applet
{

public void init ()
{
 super.init();
 setLayout(new BorderLayout());
 LwDesktop desktop = new LwDesktop();
 add(BorderLayout.CENTER, desktop);
 desktop.add (new LwButton(“Button 1”));
 …
}
…

}
…

Support available

Tutorial 20
Zaval Light-Weight Visual Component Library

© Zaval Creative Engineering Group, 2001-2002. All rights reserved.
http://www.zaval.org

All support for library usage and problems should be sent directly to support@zaval.org with “Re:
Zaval Light-Weight Visual Component Library Support” in subject line and plain text in the message body,
describing your request and/or your problem.

The Zaval Creative Engineering Group carries out its software customization/new software
development on the regular basis. For more info contact us at info@zaval.org.

Stay informed!

Now you can receive information on latest products’ updates and hotfixes via email. This is a low-
traffic list (1-2 messages per month). To subscribe, send blank mail to news-subscribe@zaval.org.

